Abstract

In coherent atomic and molecular laser spectroscopy, the capability to synthesize a temporally shaped laser pulse is a valuable asset. Experimental and theoretical work on pulse shaping in coherent spectroscopy has shown that precise control over the radiation field can enhance direct and multiphoton excitation or selectively excite an electronic or high vibrational state in a molecular system[1]. Complicated phase and amplitude modulated pulse shapes, such as [sech(at) ](1+3i), have been shown to be insensitive to inhomogeneous broadening, and do not undergo severe distortion due to optical density[2]. In addition to nonlinear laser spectroscopy, pulse shaping technology has been applied to several problems in nonlinear optics. In particular, it has been applied to soliton propagation in fibers where pulse shaping techniques have been used to observe new aspects of optical soliton propagation. Synthesis of tailored pulses with complicated amplitude and phase envelopes has enabled direct observations of complex solitons[3], and of "dark solitons"[4]. Both soliton families have detailed temporal and phase envelopes which can only be generated using pulse shaping techniques. Application of pulse shaping in other nonlinear propagation studies allow one to measure the sensitivity of the nonlinear interaction to phase and amplitude characteristics of the pulse.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.