Abstract
A new type of diffractive optical element, called a composited Dammann vortex grating (CDVG), is proposed for generation of multiple equal-energy controllable rotating petal-like modes extra cavity. As an example, it is shown that a petal-like mode is well generated for each nonzero diffraction order by a binary pure-phase 1×7 CDVG. Mode decomposition is digitally implemented by a programmable spatial light modulator (SLM), and the experimental results show that those generated petal-like patterns are in high mode purity (∼90%) for all six different nonzero orders. Also, controllable rotating petal-like modes are demonstrated when the CDVG is digitally implemented by the programmable SLM, which provides the possibility to quantitatively control the rotation rate of this type of optical tweezers. Furthermore, tunable petal-like modes are also demonstrated experimentally by introducing a vortex incident field with different topological charges.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.