Abstract

Uniaxial and/or biaxial crystals, because of their birefringent properties, can dramatically change the polarization of the light which travels through them. Based on that, crystals can be and have been used as a versatile tool to generate complex light with spatially structured phases and/or polarizations. To better understand the behavior of light in birefringent materials and to help design the components that generates complex light, we develop a spectrum-of-plane- wave based simulation technique which handles any kind of optical anisotropies. By using the technique in combination with a semi-analytical Fourier transformation, both high numerical efficiency and accuracy can be obtained simultaneously. With this technique we demonstrate several simulation examples, including the generation of single optical vortices using a uniaxial crystal, the generation of Bessel beam using a biaxial crystal, and the generation of a configurable optical bottle beam.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.