Abstract

AbstractIn this paper, we present a hydrochemical model that can be used to generate plausible karstic conduit networks that honor what is known about geology, hydrology, and topography of a karst system. To make the model applicable to a range of natural karst systems, we introduce a flexible and physically realistic flow boundary condition along the land surface. Moreover, whereas comparable existing speleogenesis models use an explicit reactive‐transport scheme, we propose an implicit reactive‐transport scheme to permit a coarser spatial discretization of the conduit cells. An application to a real karst system illustrates that the model can generate a realistic karstic network that reproduces observed hydrologic behavior in terms of current spring flow rates, regional hydraulic head field as well as average groundwater residence times. Our model provides a useful tool to generate ensembles of possible karstic conduit networks that may be used within a stochastic framework to analyze flow and transport prediction uncertainty associated with a lack of knowledge about network geometry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.