Abstract

Materials with controllable luminescence colors are highly desirable for numerous promising applications, however, the preparation of such materials, particularly with color-controllable room-temperature phosphorescence (RTP), remains a formidable challenge. In this work, we reported on a facile strategy to prepare color-controllable RTP materials via the pyrolysis of a mixture containing 1-(2-hydroxyethyl)-urea (H-urea) and boric acid (BA). By controlling the pyrolysis temperatures, the as-prepared materials exhibited ultralong RTP with emission colors ranging from cyan, green, to yellow. Further studies revealed that multiple luminescent centers formed from H-urea, which were in-situ embedded in the B2O3 matrix (produced from BA) during the pyrolysis process. The contents of the different luminescent centers could be regulated by the pyrolysis temperatures, resulting in color-tunable RTP. Significantly, the luminescent center engineering and in-situ immobilization strategy not only provided a facile method for conveniently preparing color-controllable RTP materials, but also endowed the materials prepared at relatively lower temperatures with color-changeable RTP features under thermal stimulus. Considering their unique properties, the potential applications of the as-obtained materials for advanced anti-counterfeiting and information encryption were preliminarily demonstrated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call