Abstract

Generation of coherent ion acoustic solitary waves (IASWs) in inhomogeneous plasmas by an odd eigenmode (OEM) of electron holes (EHs) is investigated using 1D electrostatic particle-in-cell (PIC) simulations. The OEM oscillates at a frequency comparable to the trapped electron bouncing frequency, as also demonstrated by Lewis' theoretical formalism about the linear eigenmode in Bernstein-Greene-Kruskal (BGK) equilibrium. The density gradient in the inhomogeneous plasmas causes asymmetry in the EH potential structure associated with the OEM, whose amplitude grows rapidly as it propagates through the density gradient region. As the ions interact with this asymmetric potential, which oscillates slowly enough for the ions to respond, they are ejected to the lower density side with a larger potential amplitude, forming a chain of IASWs coherently with the oscillation of the OEM.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.