Abstract

Generation of useful variables and features is an important issue throughout the machine learning, artificial intelligence, and applied fields for their efficient computations. In this paper, the nearest neighbor relations are proposed for the minimal generation and the reduced variables of the functions in the threshold networks. First, the nearest neighbor relations are shown to be minimal and inherited for threshold functions and they play an important role in the iterative generation of the Chow parameters. Further, they give a solution for the Chow parameters problem. Second, convex cones are made of the nearest neighbor relations for the generation of the reduced variables. Then the edges of convex cones are compared for the discrimination of variables. Finally, the reduced variables based on the nearest neighbor relations are shown to be useful for documents classification.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.