Abstract

Purpose. Using the classical Ankaferd Blood Stopper (ABS) solution to create active hemostasis during partial nephrectomy (PN) may not be so effective due to insufficient contact surface between the ABS hemostatic liquid agent and the bleeding area. In order to broaden the contact surface, we generated a chimeric hemostatic agent, ABS nanohemostat, via combining a self-assembling peptide amphiphile molecule with the traditional Ankaferd hemostat. Materials and Methods. In order to generate ABS nanohemostat, a positively charged Peptide Amphiphile (PA) molecule was synthesized by using solid phase peptide synthesis. For animal experiments, 24 Wistar rats were divided into the following 4 groups: Group 1: control; Group 2: conventional PN with only 0.5 ml Ankaferd hemostat; Group 3: conventional PN with ABS + peptide gel; Group 4: conventional PN with only 0.5 ml peptide solution. Results. Mean warm ischemia times (WITs) were 232.8 ± 56.3, 65.6 ± 11.4, 75.5 ± 17.2, and 58.1 ± 17.6 seconds in Group 1 to Group 4, respectively. Fibrosis was not different among the groups, while inflammation was detected to be significantly different in G3 and G4. Conclusions. ABS nanohemostat has comparable hemostatic efficacy to the traditional Ankaferd hemostat in the partial nephrectomy experimental model. Elucidation of the cellular and tissue effects of this chimeric compound may establish a catalytic spark and open new avenues for novel experimental and clinical studies in the battlefield of hemostasis.

Highlights

  • The use of nanomaterials in medicine involves the applications of nanoparticles and manufactured nanosystems to provide regeneration at the cellular and tissue levels [1]

  • We present a chimeric hemostatic agent, Ankaferd Blood Stopper (ABS) Nanohemostat, via combining a self-assembling peptide amphiphile (PA) molecule with the traditional Ankaferd hemostat

  • We revealed that PA-Ankaferd gel mixture (ABS Nanohemostat) is effective as traditional Ankaferd hemostat

Read more

Summary

Introduction

The use of nanomaterials in medicine involves the applications of nanoparticles and manufactured nanosystems to provide regeneration at the cellular and tissue levels [1]. Several nanomaterials have been designed to serve as drug delivery systems They encapsulate therapeutic agents and typically carry multiple targeting motifs such as hemostasis [1, 2]. Biomaterials used as tissue engineering scaffolds have specific physical properties and might form fibrous networks similar to collagenous extracellular matrix. They can be programmed to carry chemical and physical cues to provide bioactivity for cell-materials interactions. Charge neutralization mechanism allows us to use bioactive molecules with high negative or positive charge density, such as heparin, DNA, or oligonucleotides for inducing gel formation, while exploiting their bioactivity [6, 11, 12]

Objectives
Methods
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call