Abstract

CD1 molecules are beta(2)m-associated HLA class-I-like glycoproteins which have the unique ability to present glycolipid and phospholipid antigens to specific T lymphocytes. To study the biology of CD1 and its role in human disease we developed novel techniques for generation of recombinant CD1/lipid complexes by in vitro refolding. Fluorescent tetrameric complexes made from soluble recombinant CD1d/alpha-galactosylceramide complexes allowed highly sensitive and specific ex vivo and in vitro detection and functional characterization of novel human T-lymphocyte populations. Furthermore, protein crystals were obtained from soluble recombinant CD1b/beta(2)m-proteins loaded either with phosphatidylinositol or ganglioside GM2, which led to the first atomic structure determination of a CD1/lipid complex. The analysis of these crystal structures clarified how CD1b molecules can bind lipid ligands of different size, and revealed a broader spectrum of potential CD1b ligands than previously predicted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.