Abstract

The determination of color patterns of butterfly wing eyespots has been explained by the morphogen concentration gradient model. The induction model has been proposed recently as a more realistic alternative, in which the eyespot-specifying signal does not depend entirely on focal activity. However, this model requires further elaboration and supporting evidence to be validated. Here, I examined various color patterns of nymphalid butterflies to propose the mechanics of the induction model. Based on cases in which an eyespot light ring is identical to the background in color, I propose that eyespots are fundamentally composed of dark rings and non-dark "background" spaces between them. In the induction model, the dark-ring-inducing signal that is released from a prospective eyespot focus (the primary organizing center) as a slow-moving wave effects both selfenhancement and peripheral induction of the dark-ring-inhibitory signal at the secondary organizing centers, resulting in an eyespot that has alternate dark and light rings. Moreover, there are cases in which an unseen "imaginary light ring" surrounds an eyespot proper and in which PFEs are integrated into the eyespot. It appears that PFEs constitute a periodic continuum of eyespot dark rings; thus, a background space between the eyespot and a PFE is mechanistically equivalent to eyespot light rings. The eyespot dark-ring-inducing signals and PFE-inducing signal are likely to be identical in quality, but released at different times from the same organizing center. Computer simulations based on the reaction-diffusion system support the feasibility of the induction model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.