Abstract

Abstract Parthenogenetic embryos derive their genomes entirely from the maternal genome and lack paternal imprint patterns. Many achievements have been made in the study of genomic imprinting using human parthenogenetic embryonic stem cells (hPg-ESCs). However, due to developmental defects and ethical limits, a comprehensive understanding of parthenogenetic embryonic development is still lacking. Here, we generated parthenogenetic blastoids (hPg-EPSCs blastoids) from hPg-ESC-derived extended pluripotent stem cells (hPg-EPSCs) using our previously published two-step induction protocol. Morphology, specific marker expression and single-cell transcriptome analysis showed that hPg-EPSCs blastoids contain crucial cell lineages similar to blastoids (hBp-EPSCs blastoids) generated from human biparental EPSCs (hBp-EPSCs). Single-cell RNA-seq compared the expression of genes related to imprinting and X chromosome inactivation in hPg-EPSCs blastoids and hBp-EPSCs blastoids. In conclusion, we generated parthenogenetic blastoids, which will potentially promote the study of genomic imprinting in embryonic development and uncover the influence of parental origin bias on human development and pathological mechanisms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call