Abstract

The interaction of a typical gas-source molecular-beam epitaxy (GSMBE) environment with a radio-frequency (RF) nitrogen plasma source is investigated. In particular, a real-time in situ analysis of the evolution of the emission spectrum of an RF nitrogen plasma source, under high partial pressures of hydrogen (∼10−5Torr), is presented. Hydrogen, emanating from the decomposition of hydride precursors in GSMBE, results in the appearance of a sharp emission peak at the region of 656nm in the plasma spectrum, suggesting the generation of atomic hydrogen species in the nitrogen plasma cavity. The intensity of this peak is used for a qualitative evaluation of this interaction and its evolution as a function of the RF nitrogen plasma source conditions is investigated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call