Abstract

An inductively coupled argon (Ar) plasma is superimposed on a silicon (Si) plasma generated by an electron beam gun in order to realize the formation of gas-atom encapsulated Si cage clusters. The Si clusters, which are formed and deposited on a substrate, are analyzed by laser-desorption time-of-flight mass spectrometry and are found to have the mass spectra of not only pure Si cluster (Sin; n=1–17) but also Si cluster doped with Ar atom (ArSin; n=10–20) in the case that the large amount of Ar ions is generated in addition to the Si plasma. Together with the analysis of x-ray photoelectron spectroscopy, it is revealed that the Ar atom is included in the Si cluster, forming the structure of endohedral Ar@Sin complexes. Furthermore, the mass spectrum of Ar@Sin indicates the existence of the magic numbered cluster size n=15, 16 similar to the metal encapsulated Si clusters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.