Abstract

The ability to prevent disease by immunization with subunit vaccines that incorporate specific epitopes was demonstrated by DiMarchi et al. (1), who used a synthetic peptide to protect cattle against foot-and-mouth disease. However, generation of antibody to peptide antigens is often difficult owing to the small molecular mass and limited chemical complexity. We tested the hypothesis that recombinant DNA and synthetic peptide techniques would make it possible to stimulate vigorous immune responses to specific epitopes of an outer membrane protein of Neisseria gonorrhoeae. The MtrC AP1 sequence from the invariant MtrC gonococcal lipoprotein was genetically fused to maltose binding protein. The resultant fusion protein was used as the primary immunogen to stimulate MtrC AP1-specific antiserum. To enhance antibody production specific to MtrC AP1, boosting immunizations were performed with synthetic MtrC AP1 sequence contained in a multiple antigenic peptide system immunogen. The MtrC AP1-specific antiserum strongly recognized the MtrC protein on Western blots and appeared to bind native MtrC protein in situ. The generation of antibody in this fashion provides the technology to produce antibody to defined epitopes of any protein, including those found in the gonococcal outer membrane. The ability of those antibodies to inhibit bacterial growth or to activate complement protein can then be tested.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.