Abstract

The most polymorphic gene family in P. falciparum is the ∼60 var genes distributed across parasite chromosomes, both in the subtelomeres and in internal regions. They encode hypervariable surface proteins known as P. falciparum erythrocyte membrane protein 1 (PfEMP1) that are critical for pathogenesis and immune evasion in Plasmodium falciparum. How var gene sequence diversity is generated is not currently completely understood. To address this, we constructed large clone trees and performed whole genome sequence analysis to study the generation of novel var gene sequences in asexually replicating parasites. While single nucleotide polymorphisms (SNPs) were scattered across the genome, structural variants (deletions, duplications, translocations) were focused in and around var genes, with considerable variation in frequency between strains. Analysis of more than 100 recombination events involving var exon 1 revealed that the average nucleotide sequence identity of two recombining exons was only 63% (range: 52.7–72.4%) yet the crossovers were error-free and occurred in such a way that the resulting sequence was in frame and domain architecture was preserved. Var exon 1, which encodes the immunologically exposed part of the protein, recombined in up to 0.2% of infected erythrocytes in vitro per life cycle. The high rate of var exon 1 recombination indicates that millions of new antigenic structures could potentially be generated each day in a single infected individual. We propose a model whereby var gene sequence polymorphism is mainly generated during the asexual part of the life cycle.

Highlights

  • Plasmodium falciparum is a unicellular parasite that causes malaria in humans

  • A family of proteins known as P. falciparum erythrocyte membrane protein 1, PfEMP1, is expressed on the surface of infected erythrocytes and plays an important role in pathogenesis

  • The recombinant var genes were always in frame and with conserved overall var gene architecture, and the recombination rate implies that many millions of rearranged var gene sequences are produced every 48-hour life cycle within infected individuals

Read more

Summary

Introduction

Plasmodium falciparum is a unicellular parasite that causes malaria in humans. It infects over 300 million people per year and is estimated to have killed 600,000–1.2 million people in 2010 [1]. PfEMP1 is encoded by a family of hypervariable genes known as var, each representing a different antigenic form, and the parasite is able to vary its antigenic profile by switching expression between different var genes [3]. This allows the parasite to evade the human immune system and has major clinical consequences, as PfEMP1 mediates the cellular interactions and pathological properties of infected erythrocyte [4,5,6]. Each class can be further subdivided into subclasses (DBLa0.1, DBLa0.2, etc) [8]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.