Abstract

BackgroundToll-like receptor (TLR) 2 is a component of the innate immune system and senses specific pathogen associated molecular patterns (PAMPs) of both microbial and viral origin. Cell activation via TLR2 and other pattern recognition receptors (PRRs) contributes to sepsis pathology and chronic inflammation both relying on overamplification of an immune response. Intracellular antibodies expressed and retained inside the endoplasmatic reticulum (ER-intrabodies) are applied to block translocation of secreted and cell surface molecules from the ER to the cell surface resulting in functional inhibition of the target protein. Here we describe generation and application of a functional anti-TLR2 ER intrabody (αT2ib) which was generated from an antagonistic monoclonal antibody (mAb) towards human and murine TLR2 (T2.5) to inhibit the function of TLR2. αT2ib is a scFv fragment comprising the variable domain of the heavy chain and the variable domain of the light chain of mAb T2.5 linked together by a synthetic (Gly4Ser)3 amino acid sequence.ResultsCoexpression of αT2ib and mouse TLR2 in HEK293 cells led to efficient retention and accumulation of TLR2 inside the ER compartment. Co-immunoprecipitation of human TLR2 with αT2ib indicated interaction of αT2ib with its cognate antigen within cells. αT2ib inhibited NF-κB driven reporter gene activation via TLR2 but not through TLR3, TLR4, or TLR9 if coexpressed in HEK293 cells. Co-transfection of human TLR2 with increasing amounts of the expression plasmid encoding αT2ib into HEK293 cells demonstrated high efficiency of the TLR2-αT2ib interaction. The αT2ib open reading frame was integrated into an adenoviral cosmid vector for production of recombinant adenovirus (AdV)-αT2ib. Transduction with AdVαT2ib specifically inhibited TLR2 surface expression of murine RAW264.7 and primary macrophages derived from bone marrow (BMM). Furthermore, TLR2 activation dependent TNFα mRNA accumulation, as well as TNFα translation and release by macrophages were largely abrogated upon transduction of αT2ib. αT2ib was expressed in BMM and splenocytes over 6 days upon systemic infection with AdVαT2ib. Systemic transduction applying AdVαT2ib rendered immune cells largely non-responsive to tripalmitoyl-peptide challenge. Our results show persistent paralysis of TLR2 activity and thus inhibition of immune activation.ConclusionThe generated anti-TLR2 scFv intrabody inhibits specifically and very efficiently TLR2 ligand-driven cell activation in vitro and ex vivo. This indicates a therapeutic potential of αT2ib in microbial or viral infections.

Highlights

  • Toll-like receptor (TLR) 2 is a component of the innate immune system and senses specific pathogen associated molecular patterns (PAMPs) of both microbial and viral origin

  • Cellular activation through either TLR4-coreceptor of TLR4 (MD-2), TLR3, or TLR9 was not influenced by anti-TLR2 endoplasmatic reticulum (ER) intrabody (aT2ib) coexpression (Fig. 2B-D)

  • We generated an ER-bound intrabody towards TLR2 to evaluate its propensity for TLR2 blockade by TLR2 arrestment in the ER. aT2ib was derived from an antagonistic monoclonal antibody (mAb) towards both human and murine TLR2 [6] and inhibited translocation of TLR2 to the cell surface and TLR2 specific signal transduction both in vitro and ex vivo

Read more

Summary

Introduction

Toll-like receptor (TLR) 2 is a component of the innate immune system and senses specific pathogen associated molecular patterns (PAMPs) of both microbial and viral origin. Cell activation via TLR2 and other pattern recognition receptors (PRRs) contributes to sepsis pathology and chronic inflammation both relying on overamplification of an immune response. Among pattern recognition receptors (PRRs), toll-like receptors (TLRs) are prominent as cellular sensors of extracellularly encountered whole microbes or viruses, or pathogen associated molecular patterns (PAMPs) [1]. Targeting of PRRs such as CD14, TLR4, and TLR2 in models of acute infection within which deliberate short term antagonism is achieved by systemic application of neutralizing mAbs has been shown to effectively inhibit unwanted immune responses [5,6,7]. Strategies aiming at sustainable PRR antagonism have not yet been brought forward

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.