Abstract

Based on the vector diffraction theory and the inverse Faraday effect in the magneto-optic film, light-induced magnetization distributions, for a high numerical aperture focusing configuration with an azimuthally polarized beam modulated by an optimized pure multi-zone plate phase filter, are investigated. By making use of the compeletely destructive interference of its inter circle with the π phase shift between adjacent sub-annuli, and the capability to extend the constructive interference in the propagating direction through its narrow outer annulus modulated by three misplaced helical phases, an ultralong () magnetization needle with both transverse super-resolution () and uniform axial field strength is achieved in the focal region. The perfect magnetization needle and the accessible method give a guide for ultrahigh density magnetic storage, fabricating magnetic lattices for spin wave operation, as well as atomic trapping.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.