Abstract

MNX1 encodes a homeobox transcription factor with conserved embryonic requirements in spinal motor neuron formation and pancreatic beta-cell differentiation. Mutations in MNX1 are associated with dominantly inherited Currarino syndrome and neonatal diabetes. To better understand embryonic MNX1 functions we generated an hiPSC-1 knock-in line heterozygously expressing MNX1 C-terminally tagged with 2xTY1 together with a T2A-separated red fluorescent reporter mScarlet. The TY1 epitope tag was introduced to enable immunoprecipitation based analyses on molecular MNX1 interactions and mScarlet was included for enrichment of MNX1 expressing cell populations. This cell line shows normal karyotype, pluripotency marker expression and differentiation potential in vitro.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call