Abstract

Aromatic amide-derived phosphanes (Aphos) are hemilabile P,O-coordinating ligands, which, when combined with a Pd precursor, yield a promising precatalyst system for Suzuki-Miyaura cross-coupling reactions. A focused library of Aphos ligands has been constructed for structural optimization, with the target of improving catalytic efficacy. By using microwave irradiation at accurately regulated temperature, an expeditious and reproducible one-pot synthesis and screening protocol was designed and experimentally validated. The success is based on a unique self-assisted molecular editing (SAME) process in which both the substrate and the product molecules catalyze formation of the product. Thus, starting from a 4-chlorobenzamide-derived Aphos as the substrate, parallel reactions with a selected set of arylboronic acids, in the absence of an added external phosphane ligand to Pd, produced a family of structurally edited Aphos ligands. The resultant reaction mixture containing the new Aphos, the Pd species, and the base could be used for in situ screening of the Aphos efficacy in a reference Suzuki-Miyaura coupling reaction. The structures of all Aphos ligands were characterized by 31P NMR spectroscopy and their catalytic profiles in the reference reaction were evaluated by HPLC analysis. These data allowed the identification of an efficient Aphos ligand, capable of promoting room-temperature Suzuki-Miyaura coupling of unactivated and sterically hindered aryl chlorides with arylboronic acids under mildly basic conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call