Abstract

An amylosucrase gene was subjected to high-rate segmental random mutagenesis, which was directed toward a segment encoding amino acids that influence the interaction with substrate molecules in subsites -1 to +3. A screen was used to identify enzyme variants with compromised glucan chain elongation. With an average mutation rate of about one mutation per targeted codon, a considerable fraction (82%) of the clones that retained catalytic activity were deficient in this trait. A detailed characterization of selected variants revealed that elongation terminated when chains reached lengths of only two or three glucose moieties. Sequencing showed that the amylosucrase derivatives had an average of no more than two amino acid substitutions and suggested that predominantly exchanges of Asp394 or Gly396 were crucial for the novel properties. Structural models of the variants indicated that steric interference between the amino acids introduced at these sites and the growing oligosaccharide chain are mainly responsible for the limitation of glucosyl transfers. The variants generated may serve as biocatalysts for limited addition of glucose moieties to acceptor molecules, using sucrose as a readily available donor substrate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.