Abstract
Amplitude-squeezed states are generated from a room-temperature semiconductor laser using a combination of pump suppression and dispersive optical feedback. The laser amplitude noise is found to be sensitive to extremely weak feedback levels, of the order of 10-8 of the output power. a reduction of the noise from 2% below the standard quantum limit (SQL) under free-running conditions to 19% below the SQL under optimal feedback conditions is obtained. A single mode theory is presented but is found to be inadequate in explaining the measured dependence of the noise reduction on the feedback power. A multimode theory including asymmetrical cross-mode nonlinear gain is proposed to explain this discrepancy.© (1995) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.