Abstract

Our study on the synergetic effect of electrolysis and permanganate (E-PM) revealed a novel alternative method for generating active Mn(III)aq heterogeneously by electrochemically activating PM with Mn2+ as promoter and stabilizer. We systematically explored the generation mechanism of Mn(III)aq. It indicated that all three components (electrolysis + PM + Mn2+) were necessary to facilitate the generation of active Mn(III) in the E-PM-Mn2+ process. It was worth noting that Mn2+, as essential promoter and Mn(III)aq stabilizer, could considerably enhance the concentration of Mn(III) in the E-PM-Mn2+ process. Further study revealed that the active Mn(III) was mainly produced on cathode rather than in aqueous solution or on anode. In addition, the soluble Mn(III)aq generated in the E-PM-Mn2+ process was demonstrated to be very efficient for the degradation and mineralization of diclofenac (DCF) as well as methyl blue, carbamazepine, phenol, sulfamethoxazole, and nitrobenzene. Moreover, the effects of the main operating parameters (Mn2+ dosage, PM dosage, applied current density, pH of solution, and contaminant concentration) and different water matrices on the E-PM-Mn2+ process were investigated systematically. Possible degradation pathways of DCF in the E-PM-Mn2+ process were also proposed. The results demonstrated that the E-PM-Mn2+ system based on active Mn(III)aq could create a more efficient, sustainable, and less energy costing technology for water treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.