Abstract
The generation of acoustic disturbances in supersonic laminar cavity flows is investigated by large-eddy simulations of supersonic laminar flow (M = 1.2, 2.0, and 3.0) past a rectangular cavity with a length-to-depth ratio of 2. Results suggest that well-originated large-scale vortical structures with strong spanwise coherence are present in the shear layer. Compressibility effects have significant impacts on the shear-layer development and the fluctuation properties. The dominant mechanism for the acoustic radiation in supersonic laminar cavity flows is shown to be associated with the successive passage of large-scale vortices over the cavity trailing edge. It is found that Mach waves radiated from the cavity shear layer may have significant contributions for the noiseradiation in terms of enhancing the strength of the feedback compression waves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The International Journal of Acoustics and Vibration
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.