Abstract

We present an analytical study on generation of acoustic-Brownian noise in nuclear magnetic resonance (NMR) induced as a result of thermal fluctuations of the magnetic moments under non-equilibrium thermal interactions which has not been explored independent of Nyquist–Johnson noise until now. The mechanism of physical coupling between non-equilibrium thermal fluctuations and magnetic moments is illustrated using Lighthill’s formulation on suspension dynamics. We discover that unlike Nyquist–Johnson noise which has a uniform spectral density across a range of frequencies, the spectral dependence of acoustic-Brownian noise decreases with an increase in frequency and resembles Brownian noise associated with a particle in a potential well. The results have applications in the field of image enhancement algorithm as well as noise reduction instrumentation in NMR systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.