Abstract

We propose a method to generate a widely tunable linearly chirped microwave waveform based on spectral filtering and unbalanced dispersion. Heterodyne beating between two differently dispersed optical pulses in a photodetector produces the linearly chirped microwave waveform. Desired waveforms with flexible and independent control of the center frequency and sweep bandwidth can be obtained by simply tuning two optical filters. Simulation and experimental investigations are carried out, and the results are in good agreement. The measured microwave waveform has ∼5.2-ns pulse duration and ∼64-GHz sweep bandwidth, corresponding to a time-bandwidth product of ∼166.4 and a compression ratio of ∼248.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call