Abstract

Vortex-wave beams are beams that carry angular momentum. Their specific feature is a ring-like transverse distribution of wave intensity with zero intensity at the axis. A method for generating an ultrasonic vortex beam by combining a single-element transducer and a phase plate with a nonuniform thickness is proposed. The method is examined theoretically and tested experimentally. In the theoretical analysis, the acoustic field was calculated using the Rayleigh integral. Experiments were performed in water with a focusing piezoceramic source with a frequency of the order of 1 MHz; the radiation from it was transmitted through a 12-sector organic-glass phase plate. The beam vorticity was established by setting the correct thickness of sectors. The results of scanning the field with a miniature hydrophone confirmed that the amplitude and phase distributions of the generated wave field were in fact consistent with a vortex beam. The capacity of the obtained beam to induce the rotation of scatterers positioned in the focal region was demonstrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.