Abstract

Haemophilus parasuis is an important respiratory tract pathogen of swine and the etiological agent of Glässer's disease. The molecular pathogenesis of H. parasuis is not well studied, mainly due to the lack of efficient tools for genetic manipulation of this bacterium. In this study we describe a Tn5-based random mutagenesis method for use in H. parasuis. A novel chloramphenicol-resistant Tn5 transposome was electroporated into the virulent H. parasuis serovar 5 strain 29755. High transposition efficiency of Tn5, up to 104 transformants/μg of transposon DNA, was obtained by modification of the Tn5 DNA in the H. parasuis strain HS071 and establishment of optimal electrotransformation conditions, and a library of approximately 10,500 mutants was constructed. Analysis of the library using transposon-directed insertion-site sequencing (TraDIS) revealed that the insertion of Tn5 was evenly distributed throughout the genome. 10,001 individual mutants were identified, with 1561 genes being disrupted (69.4% of the genome). This newly-developed, efficient mutagenesis approach will be a powerful tool for genetic manipulation of H. parasuis in order to study its physiology and pathogenesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.