Abstract

The membrane fraction of Bacillus subtilis catalyzes the reduction of fumarate to succinate by NADH. The activity is inhibited by low concentrations of 2-(heptyl)-4-hydroxyquinoline-N-oxide (HOQNO), an inhibitor of succinate: quinone reductase. In sdh or aro mutant strains, which lack succinate dehydrogenase or menaquinone, respectively, the activity of fumarate reduction by NADH was missing. In resting cells fumarate reduction required glycerol or glucose as the electron donor, which presumably supply NADH for fumarate reduction. Thus in the bacteria, fumarate reduction by NADH is catalyzed by an electron transport chain consisting of NADH dehydrogenase (NADH:menaquinone reductase), menaquinone, and succinate dehydrogenase operating in the reverse direction (menaquinol:fumarate reductase). Poor anaerobic growth of B. subtilis was observed when fumarate was present. The fumarate reduction catalyzed by the bacteria in the presence of glycerol or glucose was not inhibited by the protonophore carbonyl cyanide m-chlorophenyl hydrazone (CCCP) or by membrane disruption, in contrast to succinate oxidation by O2. Fumarate reduction caused the uptake by the bacteria of the tetraphenyphosphonium cation (TPP+) which was released after fumarate had been consumed. TPP+ uptake was prevented by the presence of CCCP or HOQNO, but not by N,N'-dicyclohexylcarbodiimide, an inhibitor of ATP synthase. From the TPP+ uptake the electrochemical potential generated by fumarate reduction was calculated (Deltapsi = -132 mV) which was comparable to that generated by glucose oxidation with O2 (Deltapsi = -120 mV). The Deltapsi generated by fumarate reduction is suggested to stem from menaquinol:fumarate reductase functioning in a redox half-loop.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.