Abstract

The low density lipoprotein receptor-related protein 1 (LRP1) is a member of the low density lipoprotein receptor family and plays important roles in a number of physiological and pathological processes. Expression of LRP1 requires the receptor-associated protein (RAP), a molecular chaperone that binds LRP1 and other low density lipoprotein receptor family members in the endoplasmic reticulum and traffics with them to the Golgi where the acidic environment causes its dissociation. Exogenously added RAP is a potent LRP1 antagonist and binds to LRP1 on the cell surface, preventing ligands from binding. Following endocytosis, RAP dissociates in the acidic endosome, allowing LRP1 to recycle back to the cell surface. The acid-induced dissociation of RAP is mediated by its D3 domain, a relatively unstable three-helical bundle that denatures at pH <6.2 due to protonation of key histidine residues on helices 2 and 3. To develop an LRP1 inhibitor that does not dissociate at low pH, we introduced a disulfide bond between the second and third helices in the RAP D3 domain. By combining this disulfide bond with elimination of key histidine residues, we generated a stable RAP molecule that is resistant to both pH- and heat-induced denaturation. This molecule bound to LRP1 with high affinity at both neutral and acidic pH and proved to be a potent inhibitor of LRP1 function both in vitro and in vivo, suggesting that our stable RAP molecule may be useful in multiple pathological settings where LRP1 blockade has been shown to be effective.

Highlights

  • receptor-associated protein (RAP) is a chaperone for lipoprotein receptor-related protein 1 (LRP1) and dissociates at low pH when the D3 domain unfolds

  • This molecule bound to LRP1 with high affinity at both neutral and acidic pH and proved to be a potent inhibitor of LRP1 function both in vitro and in vivo, suggesting that our stable RAP molecule may be useful in multiple pathological settings where LRP1 blockade has been shown to be effective

  • To engineer a RAP molecule with a stable D3 domain, we rationalized that introducing a disulfide bond between helices 2 and 3 of this domain would lead to its stabilization

Read more

Summary

Background

RAP is a chaperone for LRP1 and dissociates at low pH when the D3 domain unfolds. Results: Stabilizing the D3 domain by introducing a disulfide bond allowed high affinity binding at pH 5.5. To develop an LRP1 inhibitor that does not dissociate at low pH, we introduced a disulfide bond between the second and third helices in the RAP D3 domain By combining this disulfide bond with elimination of key histidine residues, we generated a stable RAP molecule that is resistant to both pH- and heat-induced denaturation. This molecule bound to LRP1 with high affinity at both neutral and acidic pH and proved to be a potent inhibitor of LRP1 function both in vitro and in vivo, suggesting that our stable RAP molecule may be useful in multiple pathological settings where LRP1 blockade has been shown to be effective. Our results reveal that this stabilized RAP is highly effective at inhibiting LRP1 function

Experimental Procedures
Results
Discussion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call