Abstract
Knowledge of how the brain achieves its diverse central control of basic physiology is severely limited by the virtual absence of appropriate cell models. Isolation of clonal populations of unique peptidergic neurons from the hypothalamus will facilitate these studies. Herein we describe the mass immortalization of mouse primary hypothalamic cells in monolayer culture, resulting in the generation of a vast representation of hypothalamic cell types. Subcloning of the heterogeneous cell populations resulted in the establishment of 38 representative clonal neuronal cell lines, of which 16 have been further characterized by analysis of 28 neuroendocrine markers. These cell lines represent the first available models to study the regulation of neuropeptides associated with the control of feeding behavior, including neuropeptide Y, ghrelin, urocortin, proopiomelanocortin, melanin-concentrating hormone, neurotensin, proglucagon, and GHRH. Importantly, a representative cell line responds appropriately to leptin stimulation and results in the repression of neuropeptide Y gene expression. These cell models can be used for detailed molecular analysis of neuropeptide gene regulation and signal transduction events involved in the direct hormonal control of unique hypothalamic neurons, not yet possible in the whole brain. Such studies may contribute information necessary for the strategic design of therapeutic interventions for complex neuroendocrine disorders, such as obesity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.