Abstract
AbstractControlling the nanoparticle‐cell membrane interaction to achieve easy and fast membrane anchoring and cellular internalization is of great importance in a variety of biomedical applications. Here we report a simple and versatile strategy to maneuver the nanoparticle‐cell membrane interaction by creating a tunable hydrophobic protrusion on Janus particles through swelling‐induced symmetry breaking. When the Janus particle contacts cell membrane, the protrusion will induce membrane wrapping, leading the particles to docking to the membrane, followed by drawing the whole particles into the cell. The efficiencies of both membrane anchoring and cellular internalization can be promoted by optimizing the size of the protrusion. In vitro, the Janus particles can quickly anchor to the cell membrane in 1 h and be internalized within 24 h, regardless of the types of cells involved. In vivo, the Janus particles can effectively anchor to the brain and skin tissues to provide a high retention in these tissues after intracerebroventricular, intrahippocampal, or subcutaneous injection. This strategy involving the creation of a hydrophobic protrusion on Janus particles to tune the cell‐membrane interaction holds great potential in nanoparticle‐based biomedical applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.