Abstract

For a finite group G, the set of all prime divisors of |G| is denoted by π(G). P. Shumyatsky introduced the following conjecture, which was included in the “Kourovka Notebook” as Question 17.125: a finite group G always contains a pair of conjugate elements a and b such that π(G) = π(〈a, b〉). Denote by \(\mathfrak{Y}\) the class of all finite groups G such that π(H) ≠ π(G) for every maximal subgroup H in G. Shumyatsky’s conjecture is equivalent to the following conjecture: every group from \(\mathfrak{Y}\) is generated by two conjugate elements. Let \(\mathfrak{V}\) be the class of all finite groups in which every maximal subgroup is a Hall subgroup. It is clear that \(\mathfrak{V} \subseteq \mathfrak{Y}\). We prove that every group from \(\mathfrak{V}\) is generated by two conjugate elements. Thus, Shumyatsky’s conjecture is partially supported. In addition, we study some properties of a smallest order counterexample to Shumyatsky’s conjecture.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.