Abstract

Consideration is given to the problem of atomization of fine aerosols using atomizers of special designs that implement a cavitation regime. The formation of a fine aerosol is studied with the model of a pulse atomizer utilizing HEM energy and the model of an atomizer with a special nozzle to create counterflows. For these atomizers, the role of cavitation in obtaining a fine liquid aerosol is shown. A mathematical model is proposed which describes the processes of genesis of an aerosol cloud. Estimates of the critical pressure are obtained for the development of cavitation, the outflow velocity, and the resulting size of droplets as functions of the geometric parameters of the atomizers, the pressure in the structure, and the physicochemical properties of the liquid. Experimental investigations of the dispersion and concentration of aerosol particles are carried out using optical methods of measurement. Results of measuring the dispersion parameters of an aerosol in the process of cavitation atomization of liquids are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.