Abstract

Abstract Growth of an andesitic lava dome at Soufriere Hills Volcano, Montserrat, beginning in November 1995, caused instability of a hydrothermally altered flank of the volcano. Catastrophic failure occurred on 26 December 1997, 14 months after the instability was first recognized. Two months before failure a dome lobe had extruded over the unstable area and by 25 December 1997 this had a volume of 113 x 10 6 m 3 . At 03:01 (local time) the flank rocks and some dome talus failed and generated a debris avalanche (volume 46 x 10 6 m 3 ). Between 35 and 45 x 10 6 m 3 of the dome then collapsed, generating a violent pyroclastic density current that devastated 10 km 2 of southern Montserrat. The failure of the flank and dome formed two adjacent bowl-shaped collapse depressions. The most intense activity lasted about 11.6 minutes. The hummocky debris avalanche deposit is composed of a mixture of domains of heterolithic breccia. The pyroclastic density current had an estimated peak velocity of 80-90 ms -1 , and minimum flux of 10 8 kgs 1 . The current was largely erosional on land with most deposition out at sea. Destructive effects included removal of houses, trees and large vehicles, and formation of a scoured surface blackened by a thin (3-4 mm) layer of tar. Two discrete depositional units formed from the pyroclastic density current, each with a lower coarse-grained layer and an upper fine-grained stratified layer. These deposits are overlain by an ashfall layer related to buoyant lofting of the current. Flank failure is attributed to loading of hydrothermally weakened rocks by the dome. The generation of the pyroclastic density current is attributed to failure and explosive disintegration of the dome, involving release and violent expansion of gases initially at high pore pressures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.