Abstract

In this paper, we first suggest a scheme for the generation of a particular class of Gilmore–Perelomov-type SU(1,1) coherent states, which may be established as nonlinear coherent states. The proposal employs a two-level atom that interacts with a single-mode quantized cavity field (by using an intensity-dependent Jaynes–Cummings model) and at the same time a strong external classical field. The time evolution of the system first leads to the generation of a superposition of SU(1,1) coherent states. Depending on the initial states of the atom and the field which may be appropriately prepared, and also under the conditions in which the atom is detected (in the excited or ground state) after the occurrence of the interaction, the field will be collapsed to arbitrary combinations or a single class of Gilmore–Perelomov-type SU(1,1) coherent states. Then, it is shown that, following a similar procedure, our proposed scheme can successfully generate various superpositions and, in particular, a single class of SU(2) coherent states, too.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call