Abstract
Sedimentary units generally present anisotropy in their hydraulic properties, with higher hydraulic conductivity along bedding planes, rather than perpendicular to them. This common property leads to a modeling challenge if the sedimentary structure is folded. In this paper, we show that the gradient of the geological potential used by implicit geological modeling techniques can be used to compute full hydraulic conductivity tensors varying in space according to the geological orientation. For that purpose, the gradient of the potential, a vector normal to the bedding, is used to construct a rotation matrix that allows the estimation of the 3D hydraulic conductivity tensor in a single matrix operation. A synthetic 2D cross section example is used to illustrate the method and show that flow simulations performed in such a folded environment are highly influenced by this rotating anisotropy. When using the proposed method, the streamlines follow very closely the folded formation. This is not the case with an isotropic model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.