Abstract

A 360° all-around multiview three-dimensional (3D) display system is proposed by using coarse-pitch circular-aligned OLED microdisplays. The magnified virtual color images projected from microdisplays serve as stereo images, which can create separate eyeboxes for the viewer. Through inserting baffles, a transitional stereo image assembled by two spatially complementary segments from adjacent stereo images is presented to a complementary fusing zone (CFZ) which locates between adjacent eyeboxes. For a moving observation point, the spatial ratio of the two complementary segments evolves gradually, resulting in continuously changing transitional stereo images and thus overcoming the problem of discontinuous moving parallax. Such a controllable light-ray fusing technology, assured by the inherent large divergent angle of OLED pixels, decreases the required number of display panels for 360° multiview 3D display greatly. A prototype display system with only 67 full-color OLED microdisplays is set up to demonstrate the 360° 3D color display. The develop system is freed from the dependence on mechanical moving elements, high-speed components and diffusion screens.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.