Abstract

In general, NC programs for machining free-form surfaces using a computer numerical control (CNC) machine tool are generated using a computer-aided manufacturing (CAM) system. The tool paths (CL data) generated by a CAM system are approximated straight-line segments based on tolerance (allowable error). As a result, the tolerance affects the machining accuracy and time. If the tolerance is set to a small value, the lengths of the segments are shortened, and the machining accuracy is improved. The process in which a CNC machine tool reads and analyzes an NC program and controls the motors requires a minimum processing time of an NC program block (block-processing time). Therefore, if the lengths of the approximated straight-line segments are too small, it will be impossible to reach the indicated feed speed, and the machining time will be longer. In this study, by identifying the block-processing time of a CNC controller and deriving the appropriate length of the approximated straight-line segment based on the block-processing time, a CL data creation method that is capable of high-speed and high-accuracy free-form surface machining is proposed. In addition, experimental verification tests of the method are conducted.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call