Abstract

An efficient method is proposed for the generation and swapping of multi-qubit entangled state in an array of linearly coupled superconducting resonators, each of which is coupled to N superconducting qubits. With the external driving fields to adjust the desired qubit–resonator interaction, we firstly show that the multipartite entangled state of superconducting qubits hosted in two nearest-neighbor interacting resonators can be deterministically realized. Furthermore, by utilizing the produced entangled state, we put forward a protocol for the swapping of quantum entangled state in the coupled resonator array based on measurement, i.e., the multi-particle entangled state can be achieved for the qubits in long-distance separated resonators. The numerical simulation suggests that our scheme is feasible with current circuit QED technology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call