Abstract

Chemical and genetic modifications on the surface of viral protein cages confer unique properties to the virus particles with potential nano and biotechnological applications. The enclosed space in the interior of the virus particles further increases its versatility as a nanomaterial. In this paper, we report a simple method to generate a high yield of stable cowpea mosaic virus (CPMV) empty capsids from their native nucleoprotein counterparts by removing the encapsidated viral genome without compromising the integrity of the protein coat. Biochemical and structural comparison of artificially generated empty particles did not reveal any distinguishable differences from CPMV particles containing viral RNA. Preliminary results on the use of artificially produced empty CPMV capsids as a carrier capsule are described.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.