Abstract

Resonance-stabilized radicals containing indane, indene, and fluorenyl moieties exhibit attenuated reactivity toward oxygen. Rate constants of ∼105 M-1 s-1 were observed for the most stabilized radicals. The dependence of kOX (rate constant for radical trapping by oxygen) on the corresponding bond dissociation energies revealed that stereoelectronic effects are more important than steric effects in determining the low radical reactivity with oxygen. Scavenging by the nitroxide TEMPO was also examined, and revealed that in this case steric effects are more important than in the case of oxygen. The rate constants for the hydrogen abstraction by cumyloxyl and tert-butoxyl radicals generated thermally and photochemically have been determined in benzene, and were in the range of ca. (1−13) × 106 M-1 s-1, showing that benzylic stabilization has a modest effect on substrate reactivity as a hydrogen donor toward alkoxyl radicals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.