Abstract
Strained cyclic allenes are short-lived intermediates that confine a functional group with a preferred linear geometry, an allene, into a small ring, inducing strain-driven reactivity. Nitrogen-containing variants, or azacyclic allenes, have proved valuable for the assembly of complex nitrogen-containing compounds. Whereas 3,4-azacyclic allenes, which bear a symmetrical core, have been the focus of multiple studies, their unsymmetrical 2,3-azacyclic counterparts have remained underexplored. In the present study, we report density functional theory studies investigating the structure of such unsymmetrical azacyclic allenes and experimental efforts to access and engage them in strain-promoted cycloadditions under mild conditions. Control experiments support either concerted or stepwise diradical mechanisms for these reactions, depending on the type of cycloaddition examined. Moreover, we generate the corresponding 2,3-oxacyclic allene and demonstrate its reactivity in cycloadditions and a metal-catalysed process. Given the scaffolds accessed, coupled with the observed selectivity trends, these results are expected to encourage the application of unsymmetrical heterocyclic allenes for the synthesis of heterocycles that bear a high fraction of sp3-hybridized atoms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.