Abstract

Nanosecond laser flash photolysis of coniferyl alcohol and isoeugenol in acetonitrile leads to the formation of transient species that are identified as the corresponding radical cations. These radical cations decay with rate constants of ca. 1 × 106 s–1 in dry acetonitrile. Both radical cations react rapidly with hydroxylic solvents like water and alcohols to give 4-vinylphenoxyl radicals, indicating that these reagents behave as bases rather than nucleophiles. In addition, anionic reagents (acetate, cyanide, and chloride) react rapidly with the radical cations with second-order rate constants that are close to diffusion controlled. The main products generated in the presence of the anionic reagents are again the 4-vinylphenoxyl radicals, suggesting that these reagents also behave as bases. The lifetime of the radical cations in acidic acetonitrile was found to increase dramatically due to a shift in the radical cation – vinyl phenoxyl radical acid–base equilibrium to the side of the radical cation. An estimate of the pKa of the radical cation in acetonitrile of 4.0 was obtained from the data.Key words: radical cations, laser flash photolysis, lignan, vinylphenols.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.