Abstract

Between June 2015 and June 2017, two pressure-recording inverted echo sounders (PIESs) and five current and pressure-recording inverted echo sounders (CPIESs) deployed along a section across the Kerama Gap acquired a dataset of ocean bottom pressure records in which there was significant 21-day variability (Pbot21). The Pbot21, which was particularly strong from July-December 2016, was coherent with wind stress curl (WSC) on the continental shelf of the East China Sea (ECS) with a squared coherence of 0.65 for a 3-day time lag. A barotropic ocean model demonstrated the generation, propagation, and dissipation of Pbot21. The modeled results show that the Pbot21 driven by coastal ocean WSC in the ECS propagated toward the Ryukyu Island Chain (RIC), while deep ocean WSC could not induce such variability. On the continental shelf, the Pbot21 was generated nearly synchronously with the WSC from the coastline to the southeast but dissipated within a few days due to the effect of bottom friction. The detection of Pbot21 by the moored array was dependent on the 21-day WSC patterns on the continental shelf. The Pbot21 driven southeast of the Changjiang Estuary by the WSC was detected while the Pbot21 generated northeast of the Changjiang Estuary was not.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call