Abstract

Background: A new research perspective for human neurodevelopment and neurological disease modeling involves the use of human embryonic stem cells (hESC). The development of robust protocols that yield adequate neural cell populations with definite regional identities were the prerequisites for these comparative studies. Materials and Methods: We used small molecules cocktail to generate two neural progenitor cell (NPC) lines from hESCs as following: the first experimental group included Noggin, Dorsomorphin, CHIR99021 and A83-01(NDCA) and the second group composed of Noggin, Dorsomorphin, CHIR99021 and SIS3 (NDCS). To validate our findings, we expanded both cell lines for over 20 passages in vitro and checked for chromosomal stability, as well as expressions of neural and regional identity markers by immunofluorescence staining. Gene expression analysis was quantified by RT-PCR at different passages up to passage 20. Results: Both cell lines proliferated in an adherent culture system in the presence of FGF2. They retained progenitor characteristics of NESTIN, SOX1, and PAX6 protein expression, formed rosette-like structures, and had the high neurogenic capacity. Importantly, the NPC populations in their first 10 passages expressed rostral markers (OTX2 and TH), and the next 10 passages (10-20) changed their specification toward the hindbrain where they expressed HOXA3and HOXB2, which correlated with a normal central nervous system development pattern. Conclusion: These NPCs offer a new system to study human central nervous system development and disease modeling of specific neurodegenerative diseases. [GMJ.2017;6(2):143-56]

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call