Abstract

The Gram-negative bacterium Vibrio cholerae is a unique pathogen with an ability to colonize human intestine as well as outside environments. The biofilm, an organized polymeric structure produced by this bacterium known to be a significant factor for the survival and persistence in hostile conditions. However, the direct role of biofilm formation by this bacterium in environmental persistence, in vivo colonization, and pathogenesis remains unexplored. In this study, we have generated biofilm-altered Tn5 mutants of V. cholerae O139 and evaluated their in vivo colonization ability on mouse model. These Tn5 mutants were found to harbor an independent, single Tn5 insertion in their genome. TheDNA sequence analysis revealed that genomic region wherein Tn5 insertion occurred is identified to be involved in functions like LPS biosynthesis, efflux transporters, motility, purine metabolism, stringent response, VPS synthesis, and a hypothetical protein of unknown function. In single-strain infection with the planktonic culture, the biofilm-altered as well as the biofilm intermediate mutants were found to be more or less similar in their intestinal colonization ability, however infection with their biofilm form, a marked difference was observed between the biofilm deficient and other biofilm forming strains. Further, in the competition experiments, biofilm deficient and proficient mutants were found reduced in their colonization ability and outcompeted by their parent strain. In conclusion, biofilm formation in V. cholerae O139 is a genetically complex process and the controlled and regulated production of biofilm appeared to be necessary for its efficient colonization of mouse intestine.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call