Abstract
We present a scheme for generating and homodyne detecting of continuous-variable entanglement of bright optical beams with a large wavelength difference by utilizing an optical parametric oscillator (OPO) and an optical parametric amplifier (OPA) simultaneously. Entangled optical beams at 0.8 and 1.5 \ensuremath{\mu}m are generated from the OPA; the seed beams injected in the OPA as well as the local oscillators at the two wavelengths needed for homodyne detection are provided by the OPO. The entangler is a ring resonator involving a second-order nonlinear crystal that is pumped from two opposite directions. In one direction the pump power is above the oscillation threshold and the optical nonlinear resonator operates as an OPO. In the other direction the pump power is below the threshold and it operates as a phase-sensitive frequency nondegenerate optical parametric amplifier. Our scheme combines the advantages of both OPO and OPA quantum optical devices and opens another avenue for preparation and homodyne detection of high quality bright entangled light with a large wavelength difference.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.