Abstract

ABSTRACTMyeloid-derived suppressor cells (MDSC) are critical in regulating immune responses by suppressing antigen presenting cells (APC) and T cells. We previously observed that incubation of peripheral blood monocytes with interleukin (IL)-10 during their differentiation to monocyte-derived dendritic cells (moDCs) results in the generation of an APC population with a CD14+HLA-DRlowphenotype (IL-10-APC) with reduced stimulatory capacity similar to human MDSC. Co-incubation experiments now revealed that the addition of IL-10-APC to moDC caused a reduction of DC-induced T-cell proliferation, of the expression of maturation markers, and of secreted cytokines and chemokines such as TNF-α, IL-6, MIP-1α and Rantes. Addition of IL-10-APC increased the immunosuppressive molecule osteoactivin and its corresponding receptor syndecan-4 on moDC. Moreover, CD14+HLA-DRlow MDSC isolated from healthy donors expressed high levels of osteoactivin, which was even further upregulated by the auxiliary addition of IL-10. Using transcriptome analysis, we identified a set of molecules and pathways mediating these effects. In addition, we found that IL-10-APC as well as human isolated MDSC expressed higher levels of programmed death (PD)-1, PD-ligand-1 (PD-L1), glucocorticoid-induced-tumor-necrosis-factor-receptor-related-protein (GITR) and GITR-ligand. Inhibition of osteoactivin, syndecan-4, PD-1 or PD-L1 on MDSC by using blocking antibodies restored the stimulatory capacity of DC in co-incubation experiments. Activation of MDSC with Dectin-1 ligand curdlan reduced the expression of osteoactivin and PD-L1. Our results demonstrate that osteoactivin/syndecan-4 and PD-/PD-L1 are key molecules that are profoundly involved in the inhibitory effects of MDSC on DC function and might be promising tools for clinical application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.