Abstract

A novel polarized reflectarray is designed, fabricated, and experimentally characterized to show its flexibility and efficiency to control wave generation and focusing of orbital angular momentum (OAM) vortices with desirable OAM modes in the microwave frequency regime. In order to rigorously study the generation and focusing of OAM, a versatile analytical theory is proposed to theoretically study the compensation phase of reflectarray. Two prototypes of microwave reflectarrays are fabricated and experimentally characterized at 12 GHz: one for generation and one for focusing of OAM-carrying beams. Compared with the OAM-generating reflectarray, the reflectarray for focusing OAM vortex can significantly reduce the beam diameter, and this can further improve the transmission efficiency of the OAM vortex beams. We also show that the numerical and experimental results agree very well. The proposed design method and reflectarrays may spur the development of new efficient approaches to generate and focus OAM vortex waves for applications to microwave wireless communications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.