Abstract

Laser-induced plasma represents today a widespread spectroscopic emission source. It can be easily generated using compact and reliable nanosecond pulsed laser on a large variety of materials. Its application for spectrochemical analysis for example with laser-induced breakdown spectroscopy (LIBS) has become so popular that one tends to forget the complex physical and chemical processes leading to its generation and governing its evolution. The purpose of this review article is to summarize the backgrounds necessary to understand and describe the laser-induced plasma from its generation to its expansion into the ambient gas. The objective is not to go into the details of each process; there are numerous specialized papers and books for that in the literature. The goal here is to gather in a same paper the essential understanding elements needed to describe laser-induced plasma as results from a complex process. These elements can be dispersed in several related but independent fields such as laser-matter interaction, laser ablation of material, optical and thermodynamic properties of hot and ionized gas, or plasma propagation in a background gas. We believe that presenting the ensemble of understanding elements of laser-induced plasma in a comprehensive way and in limited pages of this paper will be helpful for further development and optimized use of the LIBS technique. Experimental results obtained in our laboratory are used to illustrate the studied physical processes each time such illustration becomes possible and helpful.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call